
Defining and Implementing Commutativity Conditions for
Parallel Execution

Milind Kulkarni
School of Electrical and Computer Engineering

Purdue University
milind@purdue.edu

Dimitrios Prountzos, Donald Nguyen,
Keshav Pingali

Department of Computer Science
The University of Texas at Austin

{dprountz, ddn, pingali}@cs.utexas.edu
Abstract
Irregular applications, which manipulate complex, pointer-based
data structures, are a promising target for parallelization. Recent
studies have shown that these programs exhibit a kind of paral-
lelism called amorphous data-parallelism. Prior approaches to par-
allelizing these applications, such as thread-level speculation and
transactional memory, often obscure parallelism because they do
not distinguish between the concrete representation of a data struc-
ture and its semantic state; they conflate metadata and data.

Exploiting the semantic commutativity of methods in complex
data structures is a promising approach to exposing more paral-
lelism. Prior work has shown that abstract locks can be used to cap-
ture a subset of commutativity properties, however, abstract locks
cannot uncover the parallelism in some complex data structures,
such as kd-trees and union-find structures. In this paper, we propose
a more flexible implementation of commutativity properties, called
gatekeepers, which capture more complex commutativity condi-
tions and thus expose more parallelism.

We provide a formal definition of semantic commutativity and
define conditions under which abstract locking can be applied and
those under which gatekeeping is necessary. We present a quantita-
tive study demonstrating the benefits of abstract locking and gate-
keeping in amorphous data-parallel programs. We also present an
efficient implementation of gatekeeping, which we evaluate on a
real-world application.

1. Introduction
In the programming languages community, we understand rela-
tively little about parallelism in irregular programs, which oper-
ate over complex, pointer-based data structures such as trees and
graphs. Because such applications manipulate these complex data
structures, it is unclear whether there is much parallelism to be
exploited. Recent studies by Kulkarni et al. [15] have shown that
many irregular applications exhibit a generalized form of data-
parallelism called amorphous data parallelism, and that this par-
allelism is both plentiful [13] and can be exploited efficiently [14].

To understand amorphous data-parallelism, it is illustrative to
consider Niklaus Wirth’s famous aphorism, “Program = Algorithm

Figure 1. Abstract view of irregular algorithm and data structure

+ Data structure.” We must consider the data structures an applica-
tion uses separately from the algorithm the application implements.
In this spirit, Figure 1 is an abstract representation of both an irreg-
ular algorithm and the data structure that it manipulates. In many
cases, an irregular algorithm operates over a graph. An amorphous
data parallel algorithm consists of applying multiple operations to
the graph. Each operation is centered around a particular node or
element, called an active element, and involves reading or writing
some subset of the nodes and edges in the graph. The set of nodes
and edges accessed while performing an operation is called the ac-
tive element’s neighborhood. In the example shown in Figure 1, the
data structure is an undirected graph, the active elements are the
filled nodes, and the shaded regions represent the neighborhoods
of active nodes. In some algorithms, such as Kruskal’s algorithm
for minimum spanning trees (MSTs), the active elements must be
executed in a particular order; we call these ordered algorithms.
In other algorithms, such as Boruvka’s MST algorithm, the active
elements do not have an a priori order, and a sequential implemen-
tation can process active elements in any order; we call these un-
ordered algorithms. Both types of algorithms can be implemented
as iteration over worklists that keep track of active elements.

An example of an irregular algorithm that follows this pattern is
Kruskal’s MST algorithm. The algorithm begins by creating a for-
est of trees, with each node of the graph belonging to its own tree.
The edges of the graph are then placed in a priority queue, ordered
by increasing edge weight. At each step, the algorithm removes the
lightest weight edge from the queue and if the two endpoints belong
to different trees, joins the trees together. The algorithm completes
when all edges have been processed. In terms of the nomenclature
of amorphous data parallelism, the active elements are the edges
in the worklist. The neighborhood of an edge includes its two end-
points as well as any nodes and edges that must be traversed while
joining two trees. Because the edges must be processed by increas-
ing edge weight, Kruskal’s algorithm is ordered.

The programming model for amorphous data-parallel algo-
rithms is straightforward. Iteration over worklists is captured by
amorphous data-parallel iterators, which process the worklist in
a particular order for ordered worklists or any order for unordered
worklists. The iterators allow new elements to be added to the
worklist. Iterators take the form, foreach (a : wl), where a is an
active element and wl is the ordered or unordered worklist being
iterated over.

Parallel execution model Because an active element’s neighbor-
hood completely defines the data accessed when performing an
operation, computations performed by active elements with non-
overlapping neighborhoods are independent. Parallelism arises
from processing active elements with non-overlapping neighbor-
hoods simultaneously. In the case of unordered algorithms, any
independent active elements can be processed in parallel, while
in the case of ordered algorithms, parallel execution must respect
the ordering constraints imposed by the sequential algorithm. In
Kruskal’s algorithm, two edges are independent as long as they

1 2009/10/5

1 Graph g = /∗ read i n graph ∗ /
2 MST mst = new MST () ;
3 UnionFind uf = new UnionFind () ;
4 f o r e a c h (Node n : g) {
5 uf . c r e a t e (n) ; / / c r e a t e new s e t
6 }
7 f o r e a c h (Edge e : g) { / / o r d e r e d by w e i g h t
8 Node n1 = e . ge tHead () ;
9 Node n2 = e . g e t T a i l () ;

10 i f (u f . f i n d (n1) != uf . f i n d (n2)) {
11 uf . un ion (n1 , n2) ;
12 mst . add (e) ; / / p u t e i n MST
13 }
14 }

Figure 2. Pseudocode for Kruskal’s algorithm using union-find

are incident on different trees. Because the algorithm processes the
edges in order of weight, independent edges can be processed in
parallel provided that they are lighter than any other edges left to
be processed.1

A simple parallel execution strategy is as follows: multiple el-
ements are drawn from the worklist in parallel, and each is pro-
cessed concurrently by different iterations, which represent the ba-
sic construct of parallel execution. Each iteration processes the ac-
tive element, tracking its neighborhood. If an iteration detects that
its neighborhood overlaps with that of a concurrently executing it-
eration, one of the two is rolled back and its active element is placed
back in the worklist.

Conflict detection Note that while ensuring that only active nodes
with non-overlapping neighborhoods execute in parallel is correct,
this approach does not provide maximum concurrency. As a simple
example, if two active elements have overlapping neighborhoods
but the data in the region of overlap is only read, the elements
can be processed in parallel. In general, determining whether two
active elements have overlapping neighborhoods is called conflict
detection.

Determining when two active nodes are indeed independent be-
comes more complicated as data structures become more complex.
For example, when implementing Kruskal’s algorithm, it is com-
mon to use a union-find structure [5] to record which nodes belong
to which tree. Pseudocode of Kruskal’s algorithm using union-find
is in Figure 2. To see why determining independence is complex,
consider two edges being processed simultaneously by different it-
erations, where both edges are incident on the same node. Even if
the edges will not be added to the MST, both iterations will ex-
ecute the find operations in line 10. Because invoking find per-
forms path compression, the two iterations will both attempt to
write to the same node, which prevents parallel execution when
using naı̈ve conflict detection. Interestingly, using a less efficient
structure, which does not perform path compression, would allow
the two edges to be processed in parallel; using a better data struc-
ture reduces parallelism!

In [15], Kulkarni et al. note that two active nodes can be pro-
cessed in parallel safely if all the methods invoked on shared ob-
jects commute with one another in a semantic sense. Thus, because
two find operations commute with one another, the two edges can
safely be processed in parallel. Commutativity-based conflict de-
tection finds more parallelism in Kruskal’s algorithm than the naı̈ve
approach.

Contributions In this paper, we argue that for many complex
data structures, exploiting semantics and commutativity is vital to

1 This condition is sufficient, but not necessary, as an edge can be processed
before other, lighter edges as long as its computation is not invalidated when
the lighter edges are processed.

achieving significant parallelism. We present two interesting “chal-
lenge” data structures in Section 2 for which exploiting commu-
tativity is crucial to finding parallelism. Using these examples as
motivation, this paper makes several contributions:

• We use a formal definition of commutativity to provide a formal
definition of commutativity conditions—which are conditions
on pairs of methods that imply that the methods commute—in
Section 4. We also define a baseline conflict detection scheme
based on commutativity conditions.

• In section 4, we present a number of example commutativity
conditions, including conditions for our challenge data struc-
tures, and define a number of interesting properties of commu-
tativity conditions.

• In section 5, we discuss approaches that prior work has taken to
conflict detection and relate them to commutativity conditions.
We define a class of commutativity conditions for which prior
approaches fully capture the parallelism allowed by commuta-
tivity. We also provide a systematic approach for constructing
conflict detection schemes for this class of conditions.

• In section 6, we present a novel conflict detection scheme,
called gatekeepers, which is more expressive that mechanisms
proposed in prior work, and discuss how gatekeepers can be
systematically generated from commutativity conditions.

• We present experimental results in Section 7 which demonstrate
quantitatively how using gatekeepers can improve parallelism
in algorithms using our challenge data structures.

We conclude with a discussion of related work in Section 8 and
future directions for research in Section 9.

2. Motivating Examples
We motivate the need for commutativity conditions with two ex-
amples of complex data structures that are used in real algorithms,
the union-find data structure with path compression, and union by
rank [5], used in minimum spanning tree algorithms, and the kd-
tree [21], used in a data-mining application.

2.1 Union-Find
Union-find data structures, also known as disjoint-set data struc-
tures, are used to partition sets of elements into disjoint subsets.
Union-find data structures support two operations: union(a, b),
which merges the subset containing a with that of b, and find(a),
which determines which subset a belongs to. While there are many
implementations of disjoint-set data structures, the most efficient
implementation is a disjoint-set forest which uses path compres-
sion, and union-by-rank [5].

In a disjoint-set forest, each subset is represented as a tree,
rooted at a particular node. Each element in the subset points to
some other element as its parent. The root of each tree is called
the representative element of the subset and serves as the identifier
for the entire subset. To find which subset an element belongs to,
we start at the element and traverse parent pointers until we reach
the root, and then return the representative element. To merge two
subsets, the representative element of one set is made the parent of
the representative element of the other.

The naı̈ve implementation of the union-find data structure de-
scribed above has poor asymptotic running time, as the trees
formed by repeated merges can be unbalanced. While this can
be addressed by applying union-by-rank and always choosing the
shorter tree to connect to the taller tree, find and union are still
O(logn) operations. When invoking find, a chain of elements is
traversed to find the representative element of a set. During this op-
eration, if we update the parent pointer of each of those elements to
point to the representative element, the tree will be flattened. This

2 2009/10/5

optimization is known as path compression, and it dramatically
reduces the data structure’s algorithm complexity.

An interesting side effect of path compression is that find oper-
ations now require updating the data structure. While the semantic
state of the data structure does not change (invoking find on an
element does not change the membership of any subset), the con-
crete state of the data structure does change, as several pointers are
re-targeted during path compression. This behavior has some inter-
esting implications for parallelism, as we will see in Section 7.

2.2 KD-Tree
KD-trees are used to find the nearest point to a given point among
a set of points in space. They operate by recursively partitioning a
high-dimensional space by splitting it along one of its dimensions.
Consider a three-dimensional space of points. At the top level, the
space can be split along one of the axes. At subsequent levels,
the sub-spaces can be similarly split along any axis. The basic
operations of a kd-tree is to add and remove points and to issue
the query nearest(a), which returns the nearest point to a.

To illustrate these operations, we use a 1-dimensional kd-tree
built over the points {2, 8, 11, 15, 25, 28, 30, 35}, shown in Figure
3(a). While there are many possible implementations of kd-trees,
we describe the behavior of a tree implemented along the lines
of the one used in [23], which is also used in the experiments
presented in Section 7. Points are stored only in the leaf nodes
of the kd-tree. Each interior node records the “pivot” point, which
defines the split plane and is listed in the top half of the node. Each
leaf node records a set of points contained in it, shown in the top
half of the node. Both interior and leaf nodes maintain the range of
all the points they contain, shown in the bottom half of the nodes.
For each interior node, the pivot point is chosen to be roughly
equidistant between the boundaries of the ranges of its leaves. Thus,
the root node of the tree, node a, has subtrees containing the points
{2, 8, 11, 15} and {25, 28, 30, 35} and has a pivot at 10.

Given the kd-tree in Figure 3(a), we now describe how add,
remove and nearest operate:

• add: If we invoke add(16) on the kd-tree, the first step is to
determine which leaf node the point belongs to. We start at the
root node and check the pivot point (in higher dimensions, the
split plane) and find that we should check the left subtree. We
recurse until we find the leaf node the point belongs to, in this
case node e, and add it. Next, we check the ancestors of e to
determine if the range field needs to be updated. The range of
node b needs to be changed, as 16 lies outside its current range.
The updated tree is shown in Figure 3(b).

• remove: Removing a node is similar to adding a node. If we
invoke remove(15) on the tree in Figure 3(b), we traverse the
tree to find that 15 is in node e, and remove it. In this case, none
of e’s ancestors need to be updated. The new tree is shown in
Figure 3(c).

• nearest: Invoking nearest(28) on the kd-tree in Figure 3(c)
behaves as follows. First the same recursive search as used for
add and remove is applied, and 28 is located in node f. Then,
the nearest neighbor in the leaf node is found, in this case 25.
Maintaining the current best match, the recursion is unwound
to visit the parent of e, and the range of e’s sibling g is checked
to see if any point could be closer to 25 than the current best
match. Since the range 30–35 could contain a closer point, we
visit g and find a new point that is a better match, 30. We then
move up one level, reaching the root node. We again check
the sibling tree, rooted at b, and find that no point in its range
(2–16) could be closer to 28 than the current best match. This
range check allows us to skip traversing that subtree. As we
have reached the root node, the operation is complete and we
return the current best match.

1 Graph g = /∗ read i n graph ∗ /
2 MST mst = new MST () ;
3 UnionFind uf = new UnionFind () ;
4 W o r k l i s t wl = new W o r k l i s t () ;
5 f o r e a c h (Node n : g) {
6 uf . c r e a t e (n) ;
7 wl . add (n) ;
8 n . ou tEdges = n . g e t E d g e s () ;
9 }

10 f o r e a c h (Node n : wl) { / / unordered
11 a = uf . f i n d (n) ; / / f i n d rep node f o r n
12 Edge e = n u l l ;
13 f o r (Edge k : a . ou tEdges) {
14 Node p1 = k . getHead () , p2 = k . g e t T a i l () ;
15 i f (u f . f i n d (p1) != a | | uf . f i n d (p2) != a)
16 i f ((e != n u l l) && (k . we ig h t () < e . we i gh t ()))
17 e = k ;
18 }
19 i f (e != n u l l) {
20 mst . add (e) ; / / add edge t o MST
21 / / g e t rep node f o r o t h e r e n d p o i n t
22 b1 = uf . f i n d (e . ge tHead ()) ;
23 b2 = uf . f i n d (e . g e t T a i l ()) ;
24 i f (b1 != a)
25 uf . un ion (a , b1) ; / / merge components
26 e l s e
27 uf . un ion (a , b2) ;
28 c = uf . f i n d (a) ; / / f i n d new rep node
29 upda teOutEdges (c , a , b) ;
30 wl . add (c) ;
31 }
32 }

Figure 4. Pseudocode for Boruvka’s MST algorithm

2.3 Algorithms
Because we are interested in parallelism in programs, not merely
data structures, it is important to consider how these data structures
are used. In other words, the algorithm that manipulates the data
structure is just as important to parallelism as the behavior of the
data structure itself. We discuss the implications of this fact in
Section 7.

Kruskal’s Algorithm Union-find structures are used in Kruskal’s
algorithm as discussed in Section 1.

Boruvka’s algorithm The union-find data structure can be used
when implementing Boruvka’s minimum spanning tree algorithm.
The intuition behind Boruvka’s algorithm is that the MST starts
as a forest, with each node in its own component. Each compo-
nent then finds the lightest weight edge that connects it to another
component, adds that edge to the MST and merges the two com-
ponents together. The membership of nodes in components can be
maintained using a union-find data structure, as shown in the pseu-
docode for Boruvka’s algorithm in Figure 4.

The algorithm proceeds as follows. First, each node is placed
into its own component, and has its outgoing edges recorded (lines
5–9). Next, the components are processed iteratively. Because the
algorithm is unordered, this processing can happen in any order.
For each component, the lightest edge connecting it to some other
component is selected (lines 12–18). If the line is null, then this
component is fully connected and has no more outgoing edges that
can be placed in the MST. Otherwise, the edge is added to the
MST (line 20), and the component is merged with the matching
component (lines 22–23). We then find the representative node for
the merged component (line 24), and update the outgoing edges
by combining the outgoing edges of the two merged components
(line 25). The new component is then added to the worklist (line
26). The algorithm terminates when all components have no more
outgoing edges. In terms of amorphous data parallelism, the active
nodes are the components in the worklist. The neighborhood of a

3 2009/10/5

20
2 — 35

10
2 — 15

29
25 — 35

2, 8
1 — 8

11, 15
11 — 15

25, 28
25 — 28

30, 35
30 — 35

(a)

a

b

d e f g

c

20
2 — 35

10
2 — 16

29
25 — 35

2, 8
1 — 8

11, 15, 16
11 — 16

25, 28
25 — 28

30, 35
30 — 35

(b)

a

b

d e f g

c

d

20
2 — 35

10
2 — 16

29
25 — 35

2, 8
1 — 8

11, 16
11 — 16

25, 28
25 — 28

30, 35
30 — 35

(c)

a

b

e f g

c

Figure 3. Different kd-tree states

1 KDTree k d t r e e = new KDTree (p o i n t s) ;
2 Dendrogram dend = new Dendrogram () ;
3 W o r k l i s t wl = new W o r k l i s t () ;
4 f o r e a c h (p i n p o i n t s) {
5 wl . add (p) ;
6 }
7 f o r e a c h (P o i n t p i n wl) { / / unordered
8 i f (/∗ p i s c l u s t e r e d ∗ /) c o n t i nu e ;
9 P o i n t n = kdTree . n e a r e s t (p) ;

10 i f (n == p t A t I n f i n i t y) break ;
11 P o i n t m = kdTree . n e a r e s t (n) ;
12 i f (m == p) {
13 C l u s t e r c = new C l u s t e r (p , n) ;
14 kdTree . remove (p) ;
15 kdTree . remove (n) ;
16 kdTree . add (c) ;
17 dendrogram . add (c) ;
18 wl . add (c) ;
19 } e l s e {
20 wl . add (p) ;
21 }
22 }

Figure 5. Pseudocode for unordered agglomerative clustering al-
gorithm

component includes its outgoing edges and whatever portions of
the union find data structure are manipulated during the find and
union operations.

Agglomerative Clustering KD-Trees can be used in agglomera-
tive clustering. The input to the algorithm is (1) a set of points,
and (2) a metric which measures the distance between two points.
The algorithm builds a hierarchical clustering of points, called a
dendrogram, in a bottom-up manner, whose structure exposes the
similarity between points.

There are many different variants of agglomerative clustering,
we evaluated the version described in [23]. The algorithm proceeds
as follows. The kd-tree is built containing every point in space.
A worklist is then initialized with every point. In each iteration,
a point p is chosen from the worklist and its nearest neighbor n
is found. We then find the nearest neighbor of n. If n’s nearest
neighbor is p, then the two points are clustered and a new point is
created. The kd-tree is updated, and the new point is added to the
worklist. If n’s nearest neighbor is not p, then p is added back to
the worklist to be processed later. The algorithm terminates when
the worklist is empty. Pseudocode for this algorithm is shown in
Figure 5. This algorithm is unordered, with the points remaining in
the space representing the active nodes. The neighborhood is the
portions of the kd-tree manipulated by each iteration.

3. Formalizing Commutativity
In this section, we provide a precise definition of commutativity
and commutativity conditions. We show how commutativity condi-
tions, which are predicates on a data structure’s abstract state, can

v ∈ V = (Obj + B + Z + null)

σ ∈ Σ = Possible abstract states of data structure

m ∈ M = Σ× V → Σ× V
i ∈ I = Z
τ ∈ T = P(I)

Figure 6. Domains

be used to guarantee safe parallel execution. We will also use these
definitions in subsequent sections to discuss the capabilities and
limitations of various conflict detection mechanisms that have been
proposed in the literature.

3.1 State and Methods
We are concerned with amorphous data-parallel programs which
manipulate data structures in parallel. A data structure is defined by
its abstract state (e.g., for a set, the abstract state is the collection
of elements it contains) and a set of methods that can be invoked
on the data structure which manipulate that abstract state. We
assume in this work that the data structure is linearizable [11];
colloquially, the method invocations on data structures are atomic.
In the formalism we present, we assume that there is only one data
structure in the system. The formalism easily extends to multiple
data structures provided they have disjoint abstract state: invoking
methods on one data structure cannot change the abstract state of
another.

We begin by formally defining a set of domains that will be used
to discuss data structures, the methods they support, and their ab-
stract state. These domains are shown in Figure 6. V ranges over
integers, booleans, object references and null. Σ is the domain of
abstract states of the data structure. We assume that the data struc-
ture also provides an operator,≡Σ which determines if two abstract
states are equivalent.M is the domain of methods. A method takes
a data structure state and a value (our formalization assumes with-
out loss of generality that methods take single arguments) and re-
turns a new data structure state (to capture side effects) and a return
value. Iterations are given unique labels in I. The set τ ∈ T tracks
which iterations are active.

Program states are represented by the tuple 〈σ, τ〉. We define
a method invocation, mi(v), as a method m being invoked by
a particular iteration i with an argument v. The denotation of a
method invocation in a particular state maps program states to
program states and a value (augmented with bottom):

Σ× T → Σ× T × V⊥

4 2009/10/5

and is defined as:

Jmi(v)Kστ = 〈σ′, τ〉, r⊥
where m(σ, v) = (σ′, r)

r⊥ = r if i ∈ τ,⊥ otherwise

Essentially, if iteration i executes method m with argument v in
state σ, the new abstract state of the data structure is σ′, and the
method returns r. If i is not an active iteration, we return⊥ instead.

We also define the following two special methods which main-
tain the set of active iterations:

Jbegin(i)Kστ = 〈σ, τ ′〉, i where τ ′ = τ ∪ {i}
Jend(i)Kστ = 〈σ, τ ′〉, i where τ ′ = τ/{i}

Note that in the following development, “method” refers to both
methods invoked on the data structure as well as begin and end.

We define two helper functions ps and ret that project out the
program state and return value, respectively, from denotation of a
method invocation. We can thus define sequential composition:

Jα;βKστ , JβKps(JαKστ)

We define the equivalence of two program states in the natural way:

DEFINITION 1.

〈σ, τ〉 ≡ 〈σ′, τ ′〉 , σ ≡Σ σ′ ∧ τ = τ ′

In other words, two states are equivalent if they represent the same
data structure state and the same iterations are active in both.

LEMMA 1. If two program states are equivalent, applying the same
method invocation to both will produce equivalent program states.

∀m, v, i .
〈σ1, τ1〉 ≡ 〈σ2, τ2〉 ⇔ Jmi(v)Kσ1τ1 ≡ Jmi(v)Kσ2τ2

PROOF. Straightforward from definition of equivalence and method
invocation semantics.

3.2 Histories and Serializability
In prior work ([9, 24]), parallel program executions are typically
viewed as histories, with calls and responses to different methods
interleaving into a sequential sequence of invocations. Because we
assume that the data structure is linearizable, we need only express
histories in terms of interleaved method invocations; methods are
assumed to return immediately after they are invoked.

A parallel execution history H consists of some initial program
state 〈σ0, τ0〉, a series of method invocations,mi

0(v0);mj
1(v1); ... ,

and a final program state, 〈σF , τF 〉. For brevity, we writeM instead
of mi(v) unless we need to refer to the iteration which invokes a
method, or a method’s arguments. We can thus write histories as
follows: H = M0;M1;M2. Unless doing so is ambiguous, we
will leave out the initial and final states when expressing histories.

We will use the notation 〈σM ;H , τM ;H〉 to represent the inter-
mediate state of a historyH immediately before method invocation
M (this is equivalent to the final state of a historyH ′ whereH ′ has
the same initial state as H and consists of the prefix of H up to
invocation M).

We now define various common terms such as “validity” and
“serializability” in terms of our formalism.

DEFINITION 2. A history H with final state 〈σF , τF 〉 and initial
state 〈σ0, τ0〉 is VALID if the sequential composition of its method
invocations, starting from 〈σ0, τ0〉 results in 〈σF , τF 〉, and:

∀M ∈ H . ret(JMKσM ;HτM ;H) 6= ⊥

In other words, invoking the methods in H in order produces the
desired final state, and no method was invoked when its iteration
was not active. We define the equivalence of two histories as fol-
lows:

DEFINITION 3. For histories H1 and H2 with final states 〈σ1, τ1〉
and 〈σ2, τ2〉, respectively, we define H1 to be equivalent to H2

(written H1 ≡ H2) if and only if both are valid and there exists
a one-to-one mapping, η, between method invocations in H1 and
method invocations in H2 such that:

〈σ1, τ1〉 ≡ 〈σ2, τ2〉 ∧
∀M1 ∈ H1,M2 = η(M1) .

ret(JM1KσM1;H1τM1;H1) = ret(JM2KσM2;H2τM2;H2)

In other words, two histories are the same if and only if they
produce the same final state, they contain the same methods (in
some order), and every method returns the same value. In prior
work, such as [9], two histories are defined to be equivalent if, when
they are extended by other histories, their extensions are equal.
Unlike such earlier definitions of equivalence, our definition allows
for “local” determination of equivalence where we need not reason
about future method invocations.

We next define the well-known notion of serializability [1] in
terms of our formalism.

DEFINITION 4. A history H with final state 〈σ, τ〉 is SERIALIZED
with respect to its initial state 〈σ0, τ0〉 if it is VALID, and for any
two invocations M1 and M2 in H made by the same iteration i,
there is no intervening invocation M3 made by iteration j where
j 6= i.

DEFINITION 5. A history H is SERIALIZABLE iff there exists a
SERIALIZED history H ′ such that H ≡ H ′.

Because of our definition of history equivalence, this definition
of serializability is analogous to the notion of view serializability
in databases [1], where all reads (i.e., return values of method
invocations) return the same values. Note that we require that the
final data structure states of the two histories be equivalent.

We can now define the semantics of an unordered amorphous
data parallel iterator by appealing to the history produced by its
parallel execution.

DEFINITION 6. Let state 〈σ0, τ0〉 represent the state of an amor-
phous data-parallel program immediately before parallel execu-
tion of an unordered iterator begins. Let H represent the history
of parallel execution. The program’s parallel execution matches its
sequential semantics if every active element is processed2 and if H
is SERIALIZABLE.

This satisfies the semantics of amorphous data parallelism be-
cause unordered amorphous data-parallel iterators can process it-
erations in any order. A similar definition can be given for ordered
iterators, provided that the definition of SERIALIZABLE is modified
to only allow sequential orders of iterations that obey the ordering
constraints of the ordered iterator.

3.3 Commutativity
In this subsection, we present a precise definition of commutativity
conditions, which specify the conditions under which two method
invocations commute. We begin by defining commutativity for a
pair of method invocations:

2 In this paper we do not formally define what “every active element is
processed” means, but informally it means that every active element that
is generated during the execution of the program is processed to completion
by exactly one iteration. In general, we will assume that there is an external
scheduling mechanism which ensures this.

5 2009/10/5

DEFINITION 7. COMMUTES(M1,M2, 〈σ, τ〉) :

ps(JM1;M2Kστ) ≡ ps(JM2;M1Kστ) ∧
ret(JM1;M2Kστ) = ret(JM2Kστ) ∧
ret(JM2;M1Kστ) = ret(JM1Kστ) ∧

Intuitively, two method invocations commute starting from a given
state if and only if invoking them in either order produces equiv-
alent states and the return values of both invocations are the same
regardless of their order. The special functions begin and end com-
mute with all methods invoked by other iterations, but not with
methods invoked by the same iteration. Unlike previous work, we
define commutativity in terms of a specific state rather than all
states.

For our purposes, we are concerned with whether one history
can be transformed into another by swapping commuting invoca-
tions:

DEFINITION 8. Two histories H and H ′ are C-EQUIVALENT
(H ≡C H ′) if H can be transformed into H ′ by a sequence of
swaps of pairs of consecutive, commuting method invocations.

Note that H ≡C H ′ ⇒ H ≡ H ′, but not vice-versa. Finally, we
define commutativity conditions:

DEFINITION 9. The commutativity condition, φm1;m2 for a pair
of methods m1 and m2 is a predicate with signature:

V × V × Σ× T × Σ× T → B

such that:

φm1;m2(v1, v2, 〈σ, τ〉, 〈σ′, τ ′〉)⇒
∀i, j . COMMUTES(mi

1(v1),mj
2(v2), 〈σ, τ〉)

Hence, a commutativity condition is a predicate which evaluates to
true only if two methods commute in a particular state. Note that
these conditions can be dependent on the two states in which the
methods are executed, although the methods only commute in one
state. We further refine commutativity conditions by defining:

DEFINITION 10. A predicate which is a function of state, p(〈σ, τ〉)
is C-INVARIANT if and only if:

∀H,H ′, H ≡C H ′ .

∀M ∈ H . p(〈σM ;H , τM ;H〉)⇔ p(〈σM ;H′ , τM ;H′〉)

Informally, given a history H , a predicate dependent on state that
holds immediately before a method is executed always holds imme-
diately before the method is executed, even if commuting methods
are swapped. In other words, if a C-INVARIANT predicate holds
before a method in one history, it holds before that method in all
C-EQUIVALENT histories. Note that if a commutativity condition
does not refer to program state, it is trivially C-INVARIANT.

3.4 Using commutativity to prove serializability
Let us define active methods:

DEFINITION 11. A method mi
1 invoked by iteration i is ACTIVE

with respect to another method mj
2 invoked by iteration j in a

history H iff: (i) i 6= j; (ii) mi
1 appears before mj

2 in H; and
(iii) end(i) appears after mj

2 in the H .

In other words, a method invocation is active with respect to an-
other if it was invoked earlier and the iteration that invoked it is
still in the active set when the second method is invoked.

DEFINITION 12. Let A(mi
k(v)) be the set of all method invoca-

tions that are ACTIVE with respect to a method invocation in H . A

history is C-VALID if:

∀mi
p(vp) ∈ H . ∀mj

q(vq) ∈ A(mi
p(vp)) .

φmq ;mp is C-INVARIANT and

φmq ;mp(vq, vp, 〈σmq , τmq 〉, 〈σmp , τmp〉) (1)

In other words, a history is C-VALID if every method invocation
in the history commutes with every method invocation that was
ACTIVE when it was invoked.

We can now prove the following theorem.

THEOREM 1. Let H be a valid history of the parallel execution of
an amorphous data-parallel program. If H is C-VALID, then H is
SERIALIZABLE and the serialized history is C-EQUIVALENT to H .

PROOF. The proof proceeds by induction on the length of histories.
We will proceed by assuming there are only two iterations in

the history, and neither has ended. We will generalize at the end of
the proof. The base case is when there are only two invocations in
the history:

Base case: H = mi
0(·);mj

0(·) or H = mj
0(·);mi

0(·). H itself is
SERIALIZED
Inductive hypothesis: If H has length k it is serializable and the
serialized equivalent is C-EQUIVALENT to H .
Show: H with length k + 1 is serializable.

Define H− such that H = H−;Mk+1, where H− has length
k. By the inductive hypothesis, there is another history H ′ of
length k which is C-EQUIVALENT to H− and SERIALIZED. By
the definition of SERIALIZED, assume without loss of generality
H ′ = Hi;Hj where Hi consists of only invocations by iteration i,
and Hj contains only invocations by j. We now have two cases:

• Case 1: Mk+1 was invoked by iteration j.
Obviously,Hi;Hj ;Mk+1 is SERIALIZED. By Lemma 1,Hi;Hj ;Mk+1 ≡
H−;Mk+1, therefore H ≡C Hi;Hj ;Mk+1.

• Case 2: Mk+1 was invoked by iteration i.
We note that every invocation made by j in Hj is ACTIVE with
respect to Mk+1. By Equation (1), we know that Mk+1 com-
mutes with all invocations made by j in H−. Because the com-
mutativity conditions are C-INVARIANT, we have that Mk+1

commutes with all invocations made by j inHi;Hj . By the def-
inition of commutativity, we can easily show (through induction
on the length of Hj) that Hi;Hj ;Mk+1 ≡C Hi;Mk+1;Hj .
The latter history is SERIALIZED. By Lemma 1, we see that
H ≡C Hi;Mk+1;Hj .

Because in both cases, H is C-EQUIVALENT to a SERIALIZED
history, we have shown that H is serializable and its serialized
equivalent is C-EQUIVALENT to H .

We now generalize from the initial assumption in two ways.
First, we consider the effect of more than two iterations. This is
handled in a straightforward manner. According to Equation (1)
each method is checked for commutativity against active methods
from every iteration. Thus, the proof techniques which applied for
two iterations can be extended: methods which were previously
“pushed” back across methods from one iteration in Case 2 above
will now be pushed back across methods from multiple iterations.

The second generalization is to consider histories when some
iterations have invoked end. Consider a history H with three iter-
ations i, j, k where i and j are active throughout and k ends in the
middle. Let Hk be a history with i, j, k active throughout such that
H = Hk;Hij where only i and j invoke methods in Hij . We can
now apply the multi-iteration version of the proof to Hk to show
that it is C-EQUIVALENT to a serialized history with all invocations

6 2009/10/5

by k at the beginning: Hk+;Hk− where Hk+ contains only in-
vocations from k and Hk− contains only invocations by i and j
(and is serialized). Thus, H ≡C Hk+;Hk−;Hij . Because H is
C-VALID, all the methods in Hij commute with all the methods in
Hk− (because the φs are C-INVARIANT), and so by induction on
the lengths of Hk− and Hij , we can show that H is serializable.
Note the methods in Hk+ are inactive with respect to the methods
of Hij and we do not need to appeal to their commutativity.

Crucially, Theorem 1 implies that to show that a parallel ex-
ecution history of an amorphous data parallel program using an
unordered iterator satisfies the sequential semantics, we need only
show that the history is C-VALID. This theorem motivates a system
that can guarantee correct parallel execution, which we present in
Section 3.6.

As an aside, showing that a schedule is view-serializable isNP -
complete, so showing that a history H has an equivalent serialized
schedule is alsoNP -complete. However, Theorem 1 provides suffi-
cient conditions under which H is serializable, not necessary ones.
Specifically, Theorem 1 guarantees a form of serializability that is
a generalization of d-serializability [18]. A history is d-serializable
if non-interfering operations can be swapped to produce a serial
schedule. The definition of non-interference in [18] can be general-
ized to encompass commuting methods.

3.5 Inverse Methods
To complete the formal specification of commutativity, we intro-
duce the notion of inverse methods:

DEFINITION 13. A method qm ∈ M is an INVERSE of a method
m iff

∀〈σ, τ〉, i, v . ∃v′ .
as(Jmi(v); qim(v′)Kστ) ≡ σ ∧

∀〈σ′, τ ′〉,m∗, v∗, j, k .
COMMUTES(mj(v),mk

∗(v∗), 〈σ′, τ ′〉)⇔
COMMUTES(qjm(v′),mk

∗(v∗), 〈σ′, τ ′〉)
where as projects out data structure state.

Informally, an inverse method reverses the effects of its associated
forward method, and an inverse method commutes with everything
its forward method commutes with. We can thus show:

THEOREM 2. If a C-VALID historyH has the formH1;m;H2, and
we invoke qm where qm is the inverse of m, H1;m;H2; qm is C-
VALID and produces the same abstract state as H1;H2.

PROOF. Follows from the definitions of C-VALID and INVERSE and
induction on the length of H2.

This means that by invoking an inverse method at any time in a C-
VALID history, we leave the data structure in the same state as if the
forward method had never occurred.

3.6 Conflict detection using commutativity conditions
We can exploit Theorems 1 and 2 to define a baseline conflict
detection mechanism. Intuitively, the mechanism tracks method
invocations on a data structure as they happen. The scheme is
initialized with state of the system before parallel execution, and an
empty history,H . Then, every time it sees a methodmi(v) invoked
by iteration i on the data structure, it performs the following steps:

1. Determine which methods are ACTIVE.
2. Verify thatH;mi is C-VALID. For each active methodmk(vk):

1. Let the current state be 〈σc, τc〉.

2. Derive the state 〈σmk , τmk 〉 in which mk was executed by
executing the inverses of all subsequent methods in H .

3. Evaluate φmk;mi(vk, v, σmk , τmk , σc, τc)
4. If φ is false: (i) roll back either iteration i or the iteration

which executedmk by invoking inverse actions; (ii) execute
end(·) for whichever iteration rolled back; and (iii) if i was
rolled back, stop processing the current method.

5. Restore 〈σc, τc〉 by re-executing forward methods.

6. If all φs are true, execute mi and continue.

This conflict detection scheme clearly ensures that the history
remains C-VALID, and hence SERIALIZABLE, throughout parallel
execution. This approach ensures that the parallel execution of an
amorphous data-parallel program respects its sequential semantics,
provided another mechanism ensures that any active elements be-
ing processed by iterations that roll back get processed eventually.

Unfortunately, this baseline conflict detection scheme is very in-
efficient, as it requires rollbacks and re-execution to verify commu-
tativity. In the next section, we provide a number of example com-
mutativity conditions and define a number of properties of commu-
tativity conditions. In Sections 5 and 6, we will present other more
efficient conflict detection approaches and discuss the properties
commutativity conditions must possess for those approaches to be
applied effectively.

4. Commutativity Conditions
In this section, we will describe the commutativity conditions for a
number of data structures, including the “challenge” data structures
described in Section 2. We will then define two properties of com-
mutativity conditions: ONLINE-CHECKABLE and SIMPLE. Sections
5 and 6 will discuss how these properties influence the applicability
of various conflict detection mechanisms.

4.1 Commutativity Conditions
When writing commutativity conditions, we use the notation

m1(a)/rσ commutes with m2(b)/rσ′ if ψ

to describe φm1;m2 , which is shorthand for:

φm1;m2(a, b, 〈σ, τ〉, 〈σ′, τ ′〉) =

let rσ = retJm1(a)Kστ in

let rσ′ = retJm2(b)Kσ′τ ′ in ψ

Note that when φ is evaluated for two particular method invoca-
tions, as in Theorem 1 or in the baseline conflict detection scheme,
the states used are the states in which the methods were actually
invoked. For brevity, we drop the “if ψ” portion of the condition if
the condition is always true. Unless otherwise specified, the com-
mutativity conditions we provide are symmetric.

An interesting point about these commutativity conditions is
that they are only dependent on the abstract state of a data structure,
not its concrete state. Thus, commutativity conditions that are valid
for, e.g., one implementation of a set are valid for all set implemen-
tations. Crucially, this means we need only determine a commu-
tativity specification once for each type of abstract data structure
(sets, maps, graphs, etc.), rather than anew for each data structure
implementation.

We now present the commutativity specifications for a number
of data structures. While the conditions we show are correct (ac-
cording to definition 9) and C-INVARIANT, formally proving either
proposition is beyond the scope of this paper.

Accumulator An accumulator is a counter which supports two
methods, increment and read with the obvious semantics. The
commutativity conditions are given in Figure 7. Condition (1)

7 2009/10/5

(1) increment(a) commutes with increment(b)
(2) increment(a) commutes with read()/rσ′

if false
(3) read()/rσ commutes with read()/rσ′

Figure 7. Commutativity conditions for accumulator data struc-
ture.

(1) add(a)/rσ commutes with add(b)/rσ′
if a 6= b
or rσ = false ∧ rσ′ = false

(2) add(a)/rσ commutes with remove(b)/rσ′
if a 6= b

(3) add(a)/rσ commutes with contains(b)/rσ′
if a 6= b ∨ rσ = false

(4) remove(a)/rσ commutes with remove(b)/rσ′
if a 6= b
or rσ = false ∧ rσ′ = false

(5) remove(a)/rσ commutes with contains(b)/rσ′
if a 6= b ∨ rσ = false

(6) remove(a)/rσ commutes with contains(b)/rσ′

Figure 8. Commutativity conditions for set data structure.

Definitions:
dist(a, b) is an algorithm defined-distance metric such that nearest(a) returns the
nearest point according to dist.

(1) nearest(a)/rσ commutes with nearest(b)/rσ′
(2) nearest(a)/rσ commutes with add(b)/rσ′

if rσ′ = false
or dist(a, b) > dist(a, rσ)

(3) nearest(a)/rσ commutes with remove(b)/rσ′
if a 6= b ∧ rσ 6= b
or rσ′ = false

(4) remove(a)/rσ commutes with remove(b)/rσ′
if a 6= b
or rσ = false ∧ rσ′ = false

(5) remove(a)/rσ commutes with add(b)/rσ′
if a 6= b

(6) add(a)/rσ commutes with add(b)/rσ′
if a 6= b
or rσ = false ∧ rσ′ = false

Figure 9. Commutativity conditions for kd-tree data structure.

states that increments commute with each other, and condition
(3) states that reads commute with each other. Condition (2) states
that increment never commutes with read.

Set A set provides three methods: add, read and contains where
add and remove return true if they modified the set, and false oth-
erwise. The commutativity conditions for sets are in Figure 8 and
are largely straightforward. Methods commute with each other if
(i) neither modifies state (as in the case of contains or add/remove
calls that return false) or (ii) their arguments are different.

KD-Tree A kd-tree supports the methods as defined in Section
2.2. The commutativity conditions for kd-trees are given in Figure
9. The commutativity conditions (4–6), are similar to those for sets.
The conditions dealing with nearest however, are more complex.
Recall that the nearest(a) returns the point closest to a according
to a distance metric dist. As nearest is a read-only operation, it
clearly commutes with itself, as stated in condition (1). Condition
(3) states that nearest commutes with remove as long as remove
does not remove either the argument or return value of nearest.
Condition (4) states that nearest(a) commutes with add(b) as long
as add(b) does not modify state, or b is not closer to the a than the
return value of nearest(a) is.

Union-find The union-find data structure, defined as in Section
2.1 has the most complex commutativity conditions. Conditions

Definitions:

repσ(x) = ret(Jfind(x)Kστ)

rank(x) = the “rank” of x (as defined in union-by-rank).

loserσ(x, y) =


repσ(x) if rank(repσ(x)) < rank(repσ(y))
repσ(y) otherwise

(1) union(a, b) commutes with union(c, d)
if repσ(c) 6= loserσ(a, b)

and repσ(d) 6= loserσ(a, b)
(2) union(a, b) commutes with find(c)/rσ′

if repσ(c) 6= loserσ(a, b)
(3) union(a, b) commutes with create(c)/rσ′

if false
(4) find(a)/rσ commutes with find(b)/rσ′
(5) find(a)/rσ commutes with create(b)/rσ′

if false
(6) create(a)/rσ commutes with create(b)/rσ

if false

Figure 10. Commutativity conditions for union-find data structure.

(3), (5) and (6) state that create does not commute with anything—
new sets can only be created while no other iteration is accessing
the data structure. As expected, find operations commute with each
other (condition (4)). Most complex are the conditions dealing with
union. We define two helper functions: repσ(a) which returns a’s
representative node in state σ; and loserσ(a, b) which finds the
representative nodes of a and b in state σ and returns the one with
lowest rank or repσ(b) if the ranks are equal. Condition (1) states
that two unions commute as long as the second doesn’t operate
on the loser from the first. Note that this is defined by evaluating
rep on the arguments to the second union in the state that the first
union executed in. Similarly, condition (4) states union commutes
with find provided that find would not have returned the loser of
the union had it been executed in σ.

4.2 Properties of Commutativity Conditions
An interesting property that some commutativity conditions have is
ONLINE-CHECKABILITY, which we define negatively for compre-
hensibility:

DEFINITION 14. φm1;m2(v1, v2, 〈σ1, τ1〉, 〈σ2, τ2〉) is not ONLINE-
CHECKABLE if and only if φm1;m2 contains a clause which re-
quires invoking some method m∗(v∗) on state 〈σ1, τ1〉 and v∗ is
dependent onm2(·), v2 or 〈σ2, τ2〉 (including the result of invoking
m2(v2) in 〈σ2, τ2〉).

In other words, if a commutativity condition requires invoking
a method on 〈σ1, τ1〉 using information that is related to 〈σ2, τ2〉,
the condition is not ONLINE-CHECKABLE.

The nomenclature is inspired by the baseline conflict detec-
tion algorithm presented in Section 3.6. If a condition φm1;m2 is
ONLINE-CHECKABLE, there are no clauses which require knowing
what m2 or its arguments are when invoking methods on 〈σ1, τ1〉.
Hence the predicate can be evaluated without rolling back state.
Any clauses dependent on 〈σ1, τ1〉 can be evaluated and recorded
whenm1 is invoked on 〈σ1, τ1〉, and any clauses dependent onm2,
v2 or 〈σ2, τ2〉 can be evaluated whenm2 is invoked on 〈σ2, τ2〉. At
that point φm1;m2 can be fully evaluated. We will take advantage
of this property in Section 6.

The commutativity conditions given for accumulators, sets and
kd-trees are all ONLINE-CHECKABLE. Although condition (2) for
the kd-tree requires evaluating dist, the method is not dependent on
state, and so can be checked when m2 is invoked. Conversely, con-
ditions (1) and (2) for the union-find data structure require invoking
rep in the state of the first method invocation, but with the argu-

8 2009/10/5

ments of the second method invocation. Hence, conditions (1) and
(2) for the union-find data structure are not ONLINE-CHECKABLE.

Next, we define an even more restrictive property of commuta-
tivity conditions, called SIMPLE:

DEFINITION 15. A commutativity condition φm1;m2 is SIMPLE if
it is a conjunction of clauses of the form a 6= b where every a is
an argument or return value of m1 and every b is an argument or
return value of m2.

The commutativity conditions for accumulators are SIMPLE, as
are conditions (2) and (6) for sets, conditions (1) and (5) for kd-
trees and conditions (3–6) for union find structures. We will take
advantage of this property in Section 5.2.

5. Approaches to conflict detection
In this section, we discuss two prior approaches to detecting con-
flicting concurrent accesses to shared data structures. First is mem-
ory level locks, where locks are placed on concrete memory lo-
cations or objects, and second is abstract locks, where locks are
placed on abstract pieces of data, rather than concrete locations.
We discuss how these techniques can be used to express commu-
tativity conditions, and when they cannot capture the concurrency
allowed by a commutativity specification. For abstract locking, we
also provide a construction by which an abstract locking scheme
can provide conflict detection for a data structure that fully cap-
tures commutativity.

To describe the expressivity of conflict detection, we introduce
the notion of a conflict detection scheme’s compatibility with a
commutativity specification:

DEFINITION 16. A conflict detection scheme is COMPATIBLE with
a commutativity specification for a data structure if the invocation
of two methods m1 and m2 by different iterations on that data
structure are permitted to proceed concurrently by the conflict
detection mechanism if and only if m1 and m2 commute according
to the commutativity specification.

The baseline conflict detection scheme presented in Section 3.6
is COMPATIBLE with a data structure’s commutativity conditions
by construction.

5.1 Memory-level Locks
Memory-level locking refers to any locking strategy where locks
are placed on all the concrete memory locations accessed by a
thread while processing an active element in an amorphous data-
parallel program. In other words, when a thread invokes methods on
a data structure, it acquires either shared locks (in the case of reads)
or exclusive locks (in the case of writes) on every memory location
it touches. Alternately memory-level locking can be formulated
in terms of locks on concrete objects in the heap, rather than
individual memory locations. Conceptually, memory-level locking
captures the following execution strategy: every memory location
or concrete object accessed while processing an active element is
placed in its neighborhood; two active elements can be processed in
parallel if their neighborhoods only overlap in regions where both
elements read data.

In the abstract, memory level locking is the strategy employed
by parallelization schemes based on either transactional memory
(TM) [3] or thread-level speculation (TLS) [19, 12]. While both
thread-level speculation and transactional memory have numerous
implementations, they fundamentally rely on locking either mem-
ory locations, as in TLS and hardware implementations of TM
[8, 16], or every concrete object accessed during parallel execution,
as in many software implementations of TM [10, 20].

Memory-level locking is often not compatible with commuta-
tivity. This is because data structures often maintain significant

amounts of metadata, which is used to improve performance but
carries no semantic content (e.g., the range information maintained
by the kd-tree). Union-find data structures make use of parent
pointers and path compression to accelerate find operations, as dis-
cussed in Section 1. Unfortunately, memory-level locking requires
tracking accesses to metadata as well as the data in a structure;
performing path compression during a find operation places all the
updated parent pointers in an active element’s neighborhood. As
a result, even though commutativity allows two find operations on
the same set to proceed concurrently, memory level locking will
necessarily result in a conflict, as the two neighborhoods will over-
lap.

An interesting question is, when is memory-level locking com-
patible with commutativity? Because memory-level locking places
locks on metadata, and this metadata is not part of the semantic
specification of commutativity, trouble arises when two methods
which semantically commute (in other words, they access disjoint
regions of a data structure’s semantic state) nevertheless access the
same metadata in a conflicting manner.

THEOREM 3. Memory level locking for a particular data structure
implementation is compatible with a commutativity specification if
and only if, for all pairs of methods m1 and m2, φm1;m2 implies
that m1 and m2 either access disjoint data and metadata or any
data and metadata accessed by both methods is only read.

PROOF. This is straightforward from the semantics of memory-
level locking and the definition of compatibility.

Note that the compatibility of memory level locking depends
not only on the commutativity specification (i.e. a data structure’s
abstract state) but also its implementation (i.e. a data structure’s
concrete state).

Trivial examples of data structures which are compatible with
memory-level locking are those which do not maintain metadata,
such as dense matrices and arrays.

5.2 Abstract Locks
Because memory-level locking mechanisms limit parallelism when
accessing data structures with a lot of metadata, there have been
several proposals to use higher-level, abstract locks rather than
locks on concrete memory locations and objects [17, 9]. Rather
than locking every location accessed during a method invocation,
abstract locking approaches only lock the relevant semantic data,
but not the metadata. As such, when an active element is processed
and a method is invoked on a data structure, only the relevant data
is added to the element’s neighborhood, not any metadata. Note
that because the metadata is not protected by the conflict detection
scheme, other approaches must be taken to ensure that the data
structure remains in a consistent state. Abstract locking is well-
suited to providing conflict checking for collections [4, 17] and
other basic data structures [9]. However, it turns out there are more
complex data structures, such as union-find structures and kd-trees,
where abstract locking is insufficient to capture all the parallelism
allowed by the commutativity conditions we presented in Section
4.1.

To see why this is so, we must first define what abstract lock-
ing mechanisms provide. Unfortunately, to our knowledge no prior
work formalizes how abstract locks work and what their capabil-
ities are. To this end, we first define abstract locks and then de-
scribe how abstract locks can be used to implement conflict detec-
tion schemes.

DEFINITION 17. An ABSTRACT LOCK is a lock consisting of a
number of modes. When attempting to acquire a lock in a particular
mode, the acquisition succeeds if no other entity holds the lock in

9 2009/10/5

an incompatible mode. The compatibility of modes is determined
by a lock’s compatibility matrix.

Note that abstract locks according to this definition are a gener-
alization of database mode locks [7] and subsume the abstract locks
used in [17]. These locks support a number of locking paradigms.
For example, a traditional mutual exclusion lock is an abstract lock
with one mode that is incompatible with itself. A reader-writer lock
has two modes, where the reader mode is compatible with itself (al-
lowing multiple readers) but incompatible with write mode, while
the write mode is incompatible with all modes (allowing but a sin-
gle writer).

A generic abstract locking scheme for a data structure operates
as follows: the data structure associates an abstract lock with each
of its data members (defined as any arguments or return values to
methods of the data structure). The data structure also has an ab-
stract lock which represents whole data structure. When a method
is invoked, the abstract locks on its arguments and on the data struc-
ture may be acquired in some mode, and when the method returns,
the abstract lock on the return value may be acquired in some mode.
This generic locking scheme can be instantiated by choosing which
locks are acquired, and in which modes, and the particular mode
compatibility matrix for the abstract lock. This leads to the follow-
ing definition:

DEFINITION 18. An abstract locking scheme is PROPER if it is an
instantiation of the generic abstract locking scheme.

The abstract locking schemes presented in prior work on ab-
stract locking ([4, 9, 17]) all satisfy Definition 18. They also satisfy
the following definition:

DEFINITION 19. An abstract locking scheme is VALID if it is
PROPER and the scheme only allows methods to proceed in paral-
lel if they commute according to the data structure’s commutativity
specification.

A given data structure may have multiple valid abstract locking
schemes. Consider, for example, the set data structure from Figure
8. One potential scheme is to acquire an exclusive lock on every el-
ement that is passed as an argument to add, remove and contains.
It is apparent that this scheme is valid, as it only allows concurrent
invocations to methods that commute. However, this scheme is not
COMPATIBLE (according to Definition 16) with the set’s commu-
tativity specification; concurrent calls to contains(x) will be disal-
lowed, even though they commute. An alternate locking scheme—
used in [9]—is to use read/write locks and acquire locks in write
mode when calling add and remove, and in read mode when call-
ing contains. Interestingly, even this scheme is incompatible with
the commutativity specification: concurrent calls to add(x) that re-
turn false are prohibited, even though they commute.

Not all data structures can support compatible, valid abstract
locking schemes. For example, the kd-tree example in Figure 9
relies on evaluating a function (to find the distance between two
points) to determine whether nearest commutes with add. This
type of complex condition cannot be captured by abstract locks as
defined by Definition 17. Similarly, the union-find data structure
of Figure 10 requires determining the “loser” of a union to ensure
commutativity; this information is not available to a proper abstract
locking scheme, as defined in Definition 18. In Section 6, we
describe how commutativity conditions for such structures can be
implemented.

5.2.1 Building compatible abstract locking schemes
Because there are many possible valid abstract locking schemes
for a given data structure, we would like to find sufficient condi-

inc:ds inc:x read:ds read:ret
inc:ds

√ √
×

√

inc:x
√ √ √ √

read:ds ×
√ √ √

read:ret
√ √ √ √

(a) Compatibility matrix for accumulator abstract locks

inc:ds read:ds
inc:ds

√
×

read:ds ×
√

(b) Reduced compatibility matrix

Figure 11. Compatibility matrices for accumulator abstract locks

tions under which a compatible abstract locking scheme can be
constructed. We can show:

THEOREM 4. Given a commutativity specification for a data struc-
ture, if for all commutativity conditions φm1;m2 one of three condi-
tions holds: (i) φm1;m2 = false (i.e. the two methods always con-
flict); (ii) φm1;m2 = true (i.e., the two methods always commute)
or (iii) φm1;m2 is SIMPLE, then a compatible, valid abstract lock-
ing scheme exists for the data structure.

PROOF. The proof proceeds by construction. We present the con-
struction using the accumulator example from Figure 7.

Recall that, by the generic abstract locking scheme, an abstract
lock is associated with each data entity and with the data struc-
ture itself. Each lock supports a number of modes: each method
requires one mode to represent its access to the data structure as
a whole, and one mode for each argument and return value of
the method. Thus, the locks used in the accumulator support four
modes: increment(x) uses two modes, one for its argument (called
inc:x) and one for the data structure (called inc:ds); read()/rσ uses
two modes, one for its return value (called read:ret) and one for
the data structure (called read:ds). Any time a method is invoked it
acquires the data structure lock in its mode, as well as locks on all
its arguments in their appropriate modes. For example, increment
acquires the data structure lock in inc:ds mode, and lock on its ar-
gument in inc:x mode.

Next, we determine in the compatibility matrix between the
various modes, by considering each pair of methods m1 and m2

and their conflict conditions, and applying the following three rules
to determine which locks must be acquired and the compatibility
matrix for the locks:

1. If φm1,m2 = false, the two data structure modes are incom-
patible, but all other modes are left undefined. Hence, inc:ds is
incompatible with read:ds.

2. For each conjunct x 6= y in φm1,m2 , where x is an argument or
return value of m1 and y is an argument or return value of m2,
we set modes m1:x to be incompatible with mode m2:y.

3. Any pair of lock modes whose compatibility is left undefined
by rules 1 and 2 are assumed to be compatible.

The compatibility matrix thus generated for the accumulator
is as shown in Figure 11(a). It is straightforward to verify that
abstract locking schemes constructed by this approach are valid and
compatible.

Given the full compatibility matrix, we note that if a lock mode
is compatible with all other lock modes, acquiring it is superfluous.
Thus, we can eliminate any such lock modes, and remove the cor-
responding lock acquisitions from the relevant methods. This op-
timization yields the reduced compatibility matrix in Figure 11(b).
The final abstract locking scheme acquires the data structure lock
in inc:ds mode whenever increment is called, allowing other calls
to increment to proceed, and read equivalently acquires the lock in

10 2009/10/5

read:ds mode. Note that this abstract locking scheme required gen-
eral abstract locks; if abstract locks were restricted to read/write
locks, the compatibility matrix in Figure 11(b) would be inexpress-
ible.

6. Gatekeeping
In this section, we present a new conflict detection paradigm called
gatekeeping. A gatekeeper is a special object associated with a par-
ticular data structure whose role is to ensure that methods invoked
by concurrently executing iterations on a data structure respect the
specified commutativity conditions. At a high level, gatekeepers
operate as follows. When an iteration i invokes a method m on
a data structure, the gatekeeper “intercepts” the invocation and de-
termines if the method invocation commutes with all other active
method invocations (i.e., methods invoked by all iterations i for
which end(i) has not yet been invoked). If the invocation com-
mutes with all active method invocations, it is allowed to proceed
and the iteration receives the result. If the invocation does not com-
mute, then the gatekeeper invokes an arbitration mechanism which
either rolls back i or the iteration j which invoked the method that
m does not commute with.

When determining if a method m1 commutes with an active
method m2, the gatekeeper is allowed to evaluate predicates on
the arguments and return values of m1 and m2. Additionally, the
gatekeeper can invoke methods on the data structure it protects.
The ability to evaluate arbitrary predicates and methods makes
the gatekeeping approach strictly more expressive than abstract
locking.

Note that because a gatekeeper interacts with a data structure
only by invoking methods on it, the data structure is effectively
a “black box.” This means that the gatekeeper is agnostic to the
actual implementation details of the data structure, and a gatekeeper
constructed to protect one abstract data type (e.g., a gatekeeper
which protects sets) can protect all implementations of that abstract
data type.

The gatekeeper deals with multiple concurrently executing iter-
ations. To correct operation, the behavior of the gatekeeper itself
must appear atomic. In other words, the entire sequence of events:
(i) intercepting a method invocation, (ii) checking commutativity;
(iii) executing the method on the data structure, and (iv) returning
the result to the invoking iteration, should appear atomic. The over-
all data structure, including gatekeeping, should remain lineariz-
able.

There are two types of gate-keepers. The first type, forward
gatekeepers, can only implement commutativity conditions which
are ONLINE-CHECKABLE (see Definition 14), while the second,
general gatekeepers, can implement any commutativity conditions
that are C-INVARIANT (see Definition 10). We describe how each
type operates and provide examples of how forward gatekeepers
can protect kd-trees and general gatekeepers can protect union-find
structures.

6.1 Forward gatekeepers
At an abstract level, forward gatekeepers operate as follows. Each
methodm has associated with it a setCm of clauses. Each commu-
tativity condition φm1;m2 is split into clauses that are dependent on
the state in whichm1 is executed and clauses that are dependent on
the state in which m2 is executed. The former clauses are added to
the set of clauses associated with m1, Cm1 .

Whenever a gatekeeper sees a method invocation,m(v), it eval-
uates every clause inCm and records the results of evaluating those
clauses, and the return value of m(v), in a result set, Lm(v). The
gatekeeper then determines commutativity of m(v) by evaluating,
for every active invocation ma(va), the predicate φma;m. This can
be done efficiently by using results stored in Lma(va).

As an example of the procedure outlined above, we can define a
forward gatekeeper for kd-trees. Whenever nearest(x) is invoked,
the gatekeeper stores the tuple 〈x, dist(x, nx)〉 in a set. When
add(b) is invoked, the gatekeeper iterates through the set, and for
each tuple 〈a, dist(a, na)〉 evaluates dist(a, b) > dist(a, na) to
determine if the invocations of add(b) and nearest(a) commute.
Similar techniques can be used to determine the commutativity of
other methods. Crucially, the gatekeeper can determine commuta-
tivity simply by recording information about method invocations
as they happen, rather than well after they execute.

6.2 General gatekeepers
General gatekeepers are conflict detection schemes that can capture
any set of C-INVARIANT commutativity conditions. For conditions
which are not ONLINE-CHECKABLE, the gatekeeper will perform
an appropriate series of undo actions to bring the data structure to
a state where the conditions can be evaluated, and then perform
the necessary forward actions to restore the data structure state.
This means that the gatekeeper must keep a log of all actions in
case they need to be rolled back to check commutativity. Note that
this entire process must appear atomic. General gatekeepers are a
concrete implementation of the baseline conflict detection scheme
presented in Section 3.6.

6.2.1 A general gatekeeper for union-find
We now describe the design of a general gatekeeper that fully cap-
tures the commutativity conditions of Figure 10 for the operations
union and find. The union-find gatekeeper maintains two logs: find-
reps which stores all the active elements that have been returned by
a call to find as representatives of some set, and loser-rep, which
records the result of evaluating loser(a, b) whenever union(a, b) is
invoked.

For each invocation, union(a, b), the gatekeeper first computes
loser(a, b). If the loser has been recorded in the find-reps log
as the return value of an active find, then a conflict is detected.
Additionally, if either of these representatives has been recorded in
the loser-rep log as the loser representative involved in a previous
union, then a conflict is detected. The gatekeeper subsequently
performs the call to union, and updates loser-rep appropriately.

In the case of an invocation find(a), the gatekeeper first executes
the actual call on the data structure, getting the result ra. A subtle,
but important point is that if find(a) had executed earlier, before
some active invocation of union, it may have returned a different
result. This is captured in condition (2) of Figure 10 as commuta-
tivity dependent on the results of calling find in a different state. To
ensure that commutativity holds, the gatekeeper undoes the effects
of all potentially interfering calls to union, and re-executes find(a)
to ensure it still returns ra. If so, invoking find(a) does not violate
commutativity. If not, a conflict is detected. The gatekeeper then
restores the state of the data structure by re-invoking the unions.
Finally, the ra is stored in find-reps to aid in conflict checking.

Achieving an efficient implementation Recall that the gate-
keeper’s operations must appear atomic. A baseline implemen-
tation of the gatekeeper for union-find could just use a global
lock that is held while the gatekeeper executes. Such an imple-
mentation would limit parallelism. Though this implementation
allows iterations to make progress if the methods they invoke com-
mute, iterations cannot simultaneously access the gatekeeper. This
is problematic, because gatekeeping could invoke a series of in-
verse operations to check commutativity, so the global lock could
be held for a long period of time.

We can overcome the global synchronization problem if we
allow a tighter coupling between the union-find data structure and
its gatekeeper. Rather than viewing the data structure as a black

11 2009/10/5

box, we allow the gatekeeper to interact with a data structure’s
internal state.

In the case of find, for example, the gatekeeper can monitor
which nodes are traversed while locating the representative node. If
any of these nodes were the “loser” of an active union invocation,
a conflict is detected. Hence, the gatekeeper no longer needs to
undo unions to check commutativity. This dramatically reduces
the amount of time required to verify commutativity conditions,
improving performance.

The tradeoff to making this optimization is that the gatekeeper is
now tightly coupled to the implementation of the data structure, and
can only protect this particular implementation. This may be an ac-
ceptable tradeoff for performance reasons. Note, however, that this
gatekeeper is still compatible with the commutativity specification.

7. Experimental Evaluation
We evaluate the benefit of a gatekeeper-based conflict detection
mechanism by studying the available parallelism in three applica-
tions, agglomerative clustering, which uses a kd-tree, and Kruskal’s
and Boruvka’s algorithms, which each use a union-find structure.
For each application, we compare the amount of available paral-
lelism when using object-based memory-level locks to the amount
of parallelism found when using gatekeepers for the data structure
of interest. As mentioned in section 5.2, these data structures are
not amenable to conflict detection using abstract locks, so we do
not evaluate such schemes. Each application may use other shared
data structures in addition to the kd-tree or union-find structure,
such as sets, to maintain application state. To focus our comparison,
we only vary the conflict management for the kd-tree or union-find
structure. Commutativity of the other structures is determined by a
conflict management scheme compatible with their respective com-
mutativity conditions. Thus, our available parallelism results over-
estimate the parallelism of an application that uses only memory-
level locking.

To quantify the amount of parallelism in our target applications,
we use a profiling tool called ParaMeter developed by Kulkarni et
al. [13]. ParaMeter simulates the execution of an amorphous data-
parallel program on an infinite number of processors, assuming
that each active element takes a single unit of time to execute.
It does so by inspecting the worklist at each step, and finding
a maximally independent set of elements to process. The chosen
elements are then executed, and a new worklist is created, formed
from the elements not processed in the previous step, as well as
any new work that has been created. The process continues until
the worklist is empty. ParaMeter keeps track of how many elements
were processed in each time step, and produces a parallelism profile
that shows how much parallelism exists in an application over
time. The number of computation steps in the parallelism profile
is the critical path length of the algorithm. ParaMeter can also
simulate the execution of ordered algorithms by choosing elements
to execute in a manner consistent with any ordering constraints.

The key benefit to using ParaMeter is that its parallelism profiles
are implementation independent. We are interested in the general
notion of how much parallelism commutativity conditions expose,
rather than determining which implementations of memory level
locking or gatekeeping are more efficient.

7.1 Boruvka’s and Kruskal’s Algorithms
Figure 12 shows the available parallelism for Boruvka’s algorithm
using two versions of union-find: one protected with memory level
locking and one protected with a gatekeeper as described in Section
6.

To evaluate the impact of choosing the right data structure, we
also implemented a version of Boruvka’s algorithm that does not
use a union-find structure at all. This version maintains connected

1 2 5 10 20 50 100 200 500

0
50

0
15

00
25

00

Computation Step (log−scale)

A
va

ila
bl

e
P

ar
al

le
lis

m

512147

boruvka−uf−ml
boruvka−uf−gk

Figure 12. Parallelism profile for Boruvka’s algorithm. Random
graph with N = 10,000, node degree uniformly random in [1, 10]
and uniformly random edge weights. boruvka-uf-gk shows conflict
management with gatekeeping. boruvka-uf-ml shows conflict man-
agement with memory-level locking. boruvka-ec shows an alter-
nate implementation of Boruvka’s algorithm that uses edge con-
traction instead of union-find.

1 5 10 50 100 500

0
10

00
20

00
30

00

Computation Step (log−scale)

A
va

ila
bl

e
P

ar
al

le
lis

m
1148239

kruskal−uf−ml
kruskal−uf−gk

Figure 13. Parallelism profile for Kruskal’s algorithm. Random
graph with N = 10,000, node degree uniformly random in [1, 10]
and uniformly random edge weights. kruskal-uf-gk shows conflict
management with gatekeeping. kruskal-uf-ml shows conflict man-
agement with memory-level locking.

component information by applying edge contraction directly on
the input graph. We union two nodes a and b by removing the edge
(a, b), creating a new node c with the same connectivity as a or b
and then finally removing a and b from the graph. Commutativity
is determined by acquiring abstract locks on nodes of the graph.

Boruvka’s with edge contraction has a longer critical path than
either union-find variant. With edge contraction, two iterations can
process components concurrently only if the components share no
outgoing edges. Using a union-find data structure with memory-
level locking to implement Boruvka’s algorithm allows two ele-
ments to be processed simultaneously as long as neither accesses
data in the union-find data structure that the other modified. The
upshot is that many components which share outgoing edges can
nevertheless be processed in parallel.

In the absence of path compression, memory-level locking and
gatekeeping are both compatible with the commutativity conditions
in Figure 10. However, under memory-level locking, path compres-
sion can conflict with outstanding methods because parent pointers
are updated for the entire path from the find argument to its repre-
sentative node, invalidating other concurrent finds and unions that
must traverse the same path. Because each iteration of Boruvka’s
algorithm invokes multiple finds, allowing overlapping find invo-
cations to proceed in parallel affords a significant increase in par-
allelism, as we see in Figure 12. Unsurprisingly, Boruvka’s with
gatekeeping has the shortest critical path.

We see further evidence of the effect of path compression when
we consider Figure 13, which shows the available parallelism in

12 2009/10/5

1 5 10 50 100 500

0
10

00
20

00
30

00

Computation Step (log−scale)

A
va

ila
bl

e
P

ar
al

le
lis

m

104081

clustering−kd−ml
clustering−kd−gk

Figure 14. Parallelism profile for agglomerative clustering. Ran-
dom graph withN = 10,000. clustering-uf-gk shows conflict man-
agement using gatekeeping. clustering-uf-ml shows conflict man-
agement with memory-level locking.

● ●
●

●

●

●

●

●

Number of Threads

S
pe

ed
up

 o
ve

r
S

eq
ue

nt
ia

l
0

5
10

15
20

25

1 2 4 8 16 32 64 128

Figure 15. Performance of agglomerative clustering using gate-
keeping conflict management on Sun E25K server running
SunOS 5.9. Server consists of 16 CPU boards with four dual-core
1.05 GHz UltraSPARC IV processors. Code compiled with Sun
Java compiler version 1.6.0. Each result is the best of 9 runs within
the same virtual machine. Speedup relative to sequential implemen-
tation. Random graph with N = 500,000.

Kruskal’s algorithm, with the two variants of union-find. Kruskal’s
is an ordered algorithm, but both Kruskal’s and Boruvka’s algo-
rithm are based around union-find. The difference in computation
times is mainly due to the modest bump in available parallelism to-
wards the end of computation. Compared to sequential execution,
even a small increase in parallelism can shorten computation time
dramatically.

Strikingly, while the change in available parallelism between
memory-level locking and gatekeeping in Boruvka’s algorithm is
large, the change in Kruskal’s algorithm is much smaller. The
discrepancy comes from the difference in the mix of methods
issued by Boruvka’s and Kruskal’s algorithm. For Boruvka’s, each
iteration invokes find for each edge leaving a connected component
and then calls union. Kruskal’s, on the other hand, simply invokes
find for each endpoint of a single edge and calls union. Boruvka’s
algorithm invokes more finds than Kruskal’s, and under memory-
level locking, each find is less likely to commute with other finds
or unions.

7.2 Agglomerative Clustering
Figure 14 shows the available parallelism of agglomerative cluster-
ing using a kd-tree. Under memory-level locking, add, remove, and
nearest invocations conflict with each other whenever the meta-
data of the kd-tree is modified. Under gatekeeping, these methods
commute as long as they do not invalidate any outstanding nearest
invocations. Because agglomerative clustering performs numerous
nearest invocations, we see that gatekeeping provides a substantial
boost in parallelism compared to memory-level locking.

Figure 15 shows performance results for agglomerative cluster-
ing with a kd-tree using gatekeeping. We see reasonable parallel
speedup up to 64 threads, which shows the practicality of using
gatekeeping to efficiently protect concurrent data structures.

8. Related Work
Commutativity conditions can be seen as a highly generalized form
of predicate locks as used in databases [6], where locks on arbi-
trary predicates are used to determine when transactions (in our
case, iterations) can successfully execute in parallel. Database re-
search has been the source of a considerable number of techniques
to exploit the high level properties of abstract data types, including
commutativity, for concurrency control [2, 22, 24]. That work laid
the foundation for subsequent work that focused on exploiting data
structure semantics in optimistic parallelization and synchroniza-
tion schemes in shared memory systems [9, 15, 17].

Ni et al attempted to address the shortcomings of memory-level
locking as implemented by transactional memory systems by intro-
ducing open nesting, which uses abstract locks to synchronize ac-
cess to data structures by exploiting their semantics [17]. However,
the work focuses mainly on the mechanism of integrating abstract
locking with a transactional memory, rather than on how to use ab-
stract locks in data structures in a disciplined manner. In fact, the
authors note that improper use of open nesting could lead to dead-
lock situations.

Herlihy and Koskinen proved that commutativity information
informs a disciplined, safe approach for implementing open nest-
ing [9]. They boost data structures, by adding abstract locks to im-
plement a restricted form of commutativity, providing structures
with the benefits of open nesting but no possibility of deadlock.
There are two significant differences between [9] and our work.
First, while Herlihy and Koskinen describe boosting as a general
scheme which allows arbitrary code to be executed to detect se-
mantic conflicts, they provide little intuition as to how this conflict
detection should occur; in many of their examples, they use ab-
stract locks to implement boosting even though they do not take
full advantage of commutativity. In contrast, our work provides
two systematic approaches for constructing commutativity check-
ers (via abstract locking or gatekeeping), each with well-defined
expressive power. Second, Boosting is validated by evaluating par-
ticular locking implementations. In contrast, our results quantify,
in an implementation-independent manner, the parallelism exposed
by higher-level conflict detection.

This paper builds most directly on the work of Kulkarni et al.
who showed that considering commutativity is important to build-
ing an efficient system for optimistically parallelizing amorphous
data-parallel applications [15]. Our implementation of gatekeep-
ers is inspired by the scheme sketched out in their work. However,
the authors do not quantify the benefits of using commutativity
conditions as opposed to more straightforward approaches such as
memory-level locking.

9. Future work and Conclusions
There are a number of promising directions for future research.
First, in this paper we make no attempt to prove the correctness
of commutativity conditions. It would be interesting to determine
what information about the abstract state of a data structure is re-
quired to verify that commutativity conditions correctly obey Defi-
nition 9. Second, for data structures such as union-find, determining
appropriate commutativity conditions is difficult; is there a way to
generate commutativity conditions given a data structure specifica-
tion? Finally, there are also interesting avenues of implementation
research: although gatekeepers are expressive, they are often quite
inefficient. Are there more efficient conflict detection schemes that

13 2009/10/5

do not overly sacrifice expressibility? Can efficient gatekeepers be
synthesized from commutativity conditions, similar to how we syn-
thesize abstract locking schemes?

This work formalized the concept of commutativity conditions
and showed how the commutativity of methods on data structures
can be used to guarantee the correct parallel execution of programs
exhibiting amorphous data-parallelism. We discussed two prior ap-
proaches to achieving parallel execution, memory-level locking and
abstract locking, and provided sufficient conditions on commutativ-
ity conditions which explain when these approaches can capture all
the parallelism that is available in a program.

We also presented a new conflict detection approach, called
gatekeeping, which can completely capture a commutativity spec-
ification and thus find the maximum amount of parallelism the
specification allows. We observed that fully exploiting commuta-
tivity by using gatekeeping can lead to a significant increase in the
amount of parallelism found in amorphous data-parallel programs,
and demonstrated that, for one application, gatekeepers could be
used to efficiently exploit commutativity to obtain significant par-
allel speedup.

References
[1] Philip A. Bernstein, Vassoso Hadzilacos, and Nathan Goodman.

Concurrency control and recovery in database systems. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1987.

[2] A. Bondavalli, N. De Francesco, D. Latella, and G. Vaglini. Shared
abstract data type: an algebraic methodology for their specification. In
MFDBS 89: Proceedings of the second symposium on Mathematical
fundamentals of database systems, pages 53–67, New York, NY,
USA, 1989. Springer-Verlag New York, Inc.

[3] Brian D. Carlstrom, Austen McDonald, Hassan Chafi, JaeWoong
Chung, Chi Cao Minh, Christos Kozyrakis, and Kunle Olukotun.
The atomos transactional programming language. SIGPLAN Not.,
41(6):1–13, 2006.

[4] Brian D. Carlstrom, Austen McDonald, Christos Kozyrakis, and
Kunle Olukotun. Transactional collection classes. In Principles and
Practices of Parallel Programming (PPoPP), 2007.

[5] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford
Stein, editors. Introduction to Algorithms. MIT Press, 2001.

[6] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions
of consistency and predicate locks in a database system. Commun.
ACM, 19(11):624–633, 1976.

[7] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1992.

[8] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom,
John D. Davis, Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya,
Christos Kozyrakis, and Kunle Olukotun. Transactional memory
coherence and consistency. ISCA, 00:102, 2004.

[9] Maurice Herlihy and Eric Koskinen. Transactional boosting:
a methodology for highly-concurrent transactional objects. In
PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and practice of parallel programming, 2008.

[10] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N.
Scherer, III. Software transactional memory for dynamic-sized data
structures. In PODC ’03: Proceedings of the twenty-second annual
symposium on Principles of distributed computing, 2003.

[11] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a
correctness condition for concurrent objects. ACM Transactions
on Programming Languages and Systems (TOPLAS), 12(3):463–492,
1990.

[12] Venkata Krishnan and Josep Torrellas. A chip-multiprocessor
architecture with speculative multithreading. IEEE Trans. Comput.,
48(9):866–880, 1999.

[13] Milind Kulkarni, Martin Burtscher, Rajeshkar Inkulu, Keshav Pingali,
and Calin Casçaval. How much parallelism is there in irregular
applications? In PPoPP ’09: Proceedings of the 14th ACM SIGPLAN

symposium on Principles and practice of parallel programming,
2009.

[14] Milind Kulkarni, Keshav Pingali, Ganesh Ramanarayanan, Bruce
Walter, Kavita Bala, and L. Paul Chew. Optimistic parallelism
benefits from data partitioning. SIGARCH Comput. Archit. News
(Proceedings of ASPLOS 2008), 36(1):233–243, 2008.

[15] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Rama-
narayanan, Kavita Bala, and L. Paul Chew. Optimistic parallelism
requires abstractions. SIGPLAN Not. (Proceedings of PLDI 2007),
42(6):211–222, 2007.

[16] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D.
Hill, and David A. Wood. Logtm: Log-based transactional memory.
In HPCA ’06: Proceedings of the 12th International Symposium on
High Performance Computer Architecture, 2006.

[17] Yang Ni, Vijay Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosking,
Rick Hudson, J. Eliot B. Moss, Bratin Saha, and Tatiana Shpeisman.
Open nesting in software transactional memory. In Principles and
Practices of Parallel Programming (PPoPP), 2007.

[18] Christos H. Papadimitriou. The serializability of concurrent database
updates. J. ACM, 26(4):631–653, 1979.

[19] Lawrence Rauchwerger and David A. Padua. The LRPD test:
Speculative run-time parallelization of loops with privatization
and reduction parallelization. IEEE Trans. Parallel Distrib. Syst.,
10(2):160–180, 1999.

[20] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao
Minh, and Benjamin Hertzberg. McRT-STM: a high performance
software transactional memory system for a multi-core runtime. In
PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN symposium
on Principles and practice of parallel programming, pages 187–197,
New York, NY, USA, 2006. ACM Press.

[21] Hanan Samet. Foundations of Multidimensional and Metric Data
Structures (The Morgan Kaufmann Series in Computer Graphics
and Geometric Modeling). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2005.

[22] Peter M. Schwarz and Alfred Z. Spector. Synchronizing shared
abstract types. ACM Trans. Comput. Syst., 2(3):223–250, 1984.

[23] Bruce Walter, Kavita Bala, Milind Kulkarni, and Keshav Pingali. Fast
agglomerative clustering for rendering. In Interactive Ray Tracing,
2008. RT 2008. IEEE Symposium on, pages 81–86, Aug. 2008.

[24] W.E. Weihl. Commutativity-based concurrency control for abstract
data types. IEEE Transactions on Computers, 37(12), 1988.

14 2009/10/5

	Introduction
	Motivating Examples
	Union-Find
	KD-Tree
	Algorithms

	Formalizing Commutativity
	State and Methods
	Histories and Serializability
	Commutativity
	Using commutativity to prove serializability
	Inverse Methods
	Conflict detection using commutativity conditions

	Commutativity Conditions
	Commutativity Conditions
	Properties of Commutativity Conditions

	Approaches to conflict detection
	Memory-level Locks
	Abstract Locks
	Building compatible abstract locking schemes

	Gatekeeping
	Forward gatekeepers
	General gatekeepers
	A general gatekeeper for union-find

	Experimental Evaluation
	Boruvka's and Kruskal's Algorithms
	Agglomerative Clustering

	Related Work
	Future work and Conclusions

